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A series of'imines, Ar(Me)C=NCHMez, where Ar = o-X-CsH4 (X = Me, Ph, NOz, OCH3) or 1-naphthyl, is shown 
by lH NMR spectroscopy to exist in solution as an equilibrating EIZ isomeric mixture a t  ambient temperature. The 
observation of anisochronous gem-methyl signals in the Z isomer indicates a chiral ground-state conformation 
where the aryl ring is twisted out of the imino plane. Barriers to  rotation around the aryl-imino bond were found 
by dynamic NMR studies to be AC* = 14.4-20.4 kcal mol-l, increasing with the steric bulk of the ortho substituent. 
The ortho-disubstituted chiral imine 2,4,6-Me&Hz(Me)C=NCH(Ph)Me shows nonequivalent o-methyl groups 
and meta protons up to the maximum temperature investigated (-200 "C) in hydrocarbon solvents, indicating a 
very high barrier (327  kcal mol-') to ring rotation. However, in chlorinated hydrocarbon solvents, signal collapse 
is observed helow 200 O C .  It is suggested that a net ring rotation in the Z form is brought about by a mechanism in- 
volving imine-enamine tautomerism and stereomutation to the E isomer. 

Previous papers in this series1 have dealt with E l 2  equi- 
libria about the C=N bond in imines and the kinetics and 
mechanisms of the isomerization process. Proton chemical- 
shift data and a study of molecular models indicated that the 
2 isomer of imines derived from ortho-substituted aryl ke- 
tones and aldehydes adopted a nonplanar ground state having 
the C-aryl ring twisted out of the imino  lane.^,^ We now de- 
scribe a series of ketiniines derived from ortho-substituted 
acetophenones where the NMR data establish unambiguously 
that this is the case and enable the rate of rotation around the 
aryl-imino bond to be investigated. 
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Results and Discussion 
The lH NMR spectira of the ortho-substituted N-( l -ar-  

ylethy1idene)isopropylamines 1-5 were consistent with the 
existence of an equilibrating El2  isomer mixture in solution, 
as expected from the results of a previous investigation into 
the factors controlling imine equilibria in related compounds.2 
In the case of the crystalline compounds 2 and 3, the Z isomer 
could be isolated by recrystallization and could be observed 
by NMR to equilibrate slowly on dissolution. The spectra were 
assigned configurations on the basis that  the N-alkyl signals 
(methyl and methine) are shifted to higher field in the Z iso- 
mer by analogy with related imine~.~93 Furthermore, the as- 
signments were consistent in that the more shielded CMez 
group exhibited the signal doubling in each case (see below). 
The equilibrium (Table I) favored the Z isomer in 1,4, and 5 
but was almost exactly balanced in 2 and 3. Previous studies 
of E/Z equilibria in ketiinines derived from aryl alkyl ketones 
have shown that the N-alkyl group can prefer to reside cis to 
the aryl group if the latter possesses ortho substituents.2 The 
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E l 2  ratios in 1,3,4, and 5 are similar to those found in their 
N-methyl analogues.2 

An unusual feature in the spectra of compounds 1 and 2 (in 
CC14) was that the isopropyl methyl signals from the Z isomer 
were split into two doublets of equal intensity, indicating that 
the gem-methyl groups were diastereotopic. The spectra of 
3 and 5 in carbon tetrachloride, on the other hand, showed the 
normal single doublet for each isomer. However, when the 
spectra were recorded in benzene-& or toluene-ds solution, 
all five compounds showed doubling of the isopropyl methyl 
signal in the Z form. I t  is not uncommon for aromatic solvents 
to resolve accidentally isochronous signals by inducing a dif- 
ferential solvent shift.* In the case of imine 4, geminal aniso- 
chronism could not be detected a t  ambient temperature in 
either solvent. However, on lowering the sample temperature 
to -6 "C, the methyl doublet of the 2 isomer collapsed to a 
broad resonance and a t  -12 "C resolved into two components. 
Therefore, in this case the equivalence of the gem-methyl 
signals a t  ambient temperature is not accidental, but rather 
it is due to an environmental averaging process that is fast on 
the NMR time scale above 6 "C. The isopropyl methyls of the 
E isomer in 1-5 remained isochronous down to the lowest 
temperature investigated (ca. -80 O C ) .  

These results indicate that the 2 isomer adopts a chiral 
conformation 6 where the aryl ring is twisted out of the imino 
plane. Furthermore, rotation through the coplanar states 7 
and 8 to obtain the enantiomeric conformation 6' (Le., enan- 

tiomerization) must be slow on the NMR time scale a t  ambi- 
ent temperature (below -6 "C in the case of 4). This conclu- 
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Table I. NMR Data for Diastereomeric Imines and Barriers to Rotation around the Aryl-Imino Bond in the 2 Isomer 

bNCH hXCHn)eb Tc, k AG* 
imine ~ 2 a . b  z E z E “C (9-1) (kcal mol-’) 

3.19 
(3.04) 
3.36 

(3.20) 
2.97 

(2.93) 
3.41 

(3.08) 
3.23 

(3.05) 
2.74,2.80 

3.65 
(3.72) 
3.54 

(3.65) 
3.60 

(3.86) 
3.73 

(3.79) 
3.80 

(3.85) 
3.32 

1.02, 1.11 
(0.91,l.Ol) 
0.86,1.03 

(0.72,0.93) 
0.98,1.04 

(0.95) 
1.13, 1.17 

(0.95) 
1.06, 1.08 

(0.96) 
0.87 

1.18 74 2 3 f 4 d  18.3 f 0.2 
(1.15) 

17.7 f 0.2 1.14 63 2 3 f 4 d  
(1.14) 

17.7 f 0.2 56 1 3 f 3 d  1.13 
(1.13) 

14.4 f 0.4 1.20 -6 9 f 4 e  
(1.13) 

20.4 f 0.4 1.28 82 2 f l e  
(1.24) 
1.07 61 7 4 f 2 5 f  16.8f0.3g 

a Error limits f 2 .  Open data were obtained at 100 MHz in toluene-ds solution, except for 10 (see footnote g); data in parentheses 
refer to carbon tetrachloride solution. Error limits f 2 “C in measuring the coalescence temperature (Tc). Rate constant (k) derived 
by computer-assisted analysis of the exchange broadened isopropyl methyl signals. e Estimated from k = ~ A v / 2 ~ / ~  applied to the co- 
alesced isopropyl methyl signals (see ref 16). f Estimated from k = ~ ( A V A B ~  + 65AB2)”2/21’2 applied to the coalesced NCHz AB system 
(see ref 17). g Data for this imine were determined in deuteriochloroform solution at 220 MHz (see text). 

sion supports our previous  suggestion^^*^ (based on chemi- 
cal-shift data and an inspection of molecular models) that  
ortho-substituted C-aryl imines adopt a nonplanar confor- 
mation of this type. 

The anisochronous gem-methyl signals of the 2 isomers 
were observed to broaden and coalesce on raising the tem- 
perature. Rate constants ( k )  for rotation around the aryl- 
imino bond in the 2 isomer a t  the coalescence temperature 
(T,) and derived free energies of activation (AG*) are given 
in Table I. The magnitude of this rotational barrier is very 
sensitive to the ortho substituent (X) and decreases along the 
series X = 1-naphthyl >> methyl > phenyl = nitro >> meth- 
oxyl. Enantiomerizattion can take place via either of the co- 
planar states 7 or 8, which involve X/CH3 (four-bond) or 
X/CH(CH& (five-bond) passing interactions, respectively. 
An inspection of molecular models suggests that  rotation 
through 7 is the favored pathway. Undoubtedly the barriers 
are primarily “steric” in origin, though conjugating ortho 
substituents could also exert an effect on the aryl-imino 
conjugation in the coplanar states 7 and 8. However, the effect 
of conjugation might be reduced by steric inhibition of con- 
jugation between the ortho substituent and the ring in 7 or 8. 
The AG* values for aryl rotation in compounds 1-5 decrease 
roughly in line with the conformational energy of the ortho 
substituent (based on cyclohexane axial-equatorial equilibria) 
with the exception that the phenyl and methyl sequence is 
reversed. However, the lower barrier in 2 relative to 1 parallels 
the situation in substituted ethanes where the C-C rotational 
barrier decreases on replacing methyl by phenyL5 The nature 
of the nonbonded interactions in the transition state for 
rotation around the sp2-sp2 C-C bond in 1-5 will differ 
somewhat from those obtaining in sp3-sp3 ethane systems. 
Mesomeric effects may also contribute; thus, the methoxyl 
substituent in 4 could stabilize the coplanar state 7 by in- 
creasing the conjugation energy and vice versa for the nitro 
substituent in 3 (cf. a recent study of central bond rotation in 
substituted biphenyls6). 

None of these amines showed any splitting of the isopropyl 
methyl doublet for the E isomer even a t  low temperature 
(down to ca. -80 “C). Rotation about the aryl-imino bond in 
the E isomer should be easier than in the 2 form, since the 
X/CH(CH& passing interaction is absent in the coplanar 
conformation 9. 

Compound 10 which contains a prochiral neopentyl group 
also exhibits restricted rotation around the 1-naphthyl-imino 
bond in the 2 isomer. Thus, a t  0 “C in deuteriochloroform 
solution the NCHz signal of the 2 isomer was broadened, but 
interpretation was complicated by homoallylic coupling to the 

I I  ,“. I O  
N” 

9 
A- 

=CCH3 protons (5J = 1.5 Hz). However, the =CCD3 ana- 
logue (prepared by exchange with CD30D) showed a strongly 
coupled AB pattern (AVAB = 8.0 Hz a t  100 MHz; JAB = 12.9 
Hz) for the NCHz signals of the 2 isomer at  -10 “C. The signal 
separation, AVAB, was too small to allow the dynamic coales- 
cence point to be located, particularly since Av decreased on 
raising the temperature. Furthermore, Avm was even smaller 
(or zero) in other solvents (including toluene-ds). Variable- 
temperature spectra were therefore recorded a t  220 MHz in 
deuteriochloroform solution. The lower barrier in 10 relative 
to 5 (Table I) reflects the somewhat smaller steric require- 
ments of the neopentyl group relative to isopropyl in this 
system. The barrier in 10 is also much lower than that re- 
ported’ for naphthyl ring rotation in 11 (AG* 23.6 kcal mol-’), 
in line with the greater steric bulk of the C-alkyl group in the 
latter compound. 

The stereochemical situation in these imines is somewhat 
similar to that obtaining in ortho-substituted benzamides (12) 

R 
I 

o\ ‘ c  

13 
,--A 

12 ,.,. 
and anilides (13) which also adopt chiral nonplanar confor- 
mations and exhibit restricted rotation around the aryl-C(0) 
or N-aryl  bond^.^^^ The aryl rotational barrier in amide 12 (X 
= CH3; R = CHzCH@ appears to be -15 kcal mol-’ as com- 
pared with AG* = 18.3 kcal mol-’ in imine 1 and 20.0 kcal 
molm1 in anilide 13 (X  = CH3; R = CHZPh; R’ = CH3).9 Re- 
placement of the o-tolyl moiety in 12 and 13 by 1-naphthyl 
also raises the barrier to aryl ring rotation (cf. imines 1 and 
51.899 

Restricted aryl ring rotation cannot normally be detected 
in symmetrically ortho-disubstituted compounds, with the 
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Figure 1. 'H NMR spectrum of 15 at 100 MHz in carbon tetrachloride 
solution at 32 OC. 

aid of prochiral N-alkyl probes (e.g., 14). since such com- 
pounds possess a molecular c plane that passes through the 
N-R moiety in the bisected conformation depicted in 14; 
hence, the paired geminal substituents in the N-R group are 
enantiotopic and i so~hronous .~  However, if R is chiral (e.g., 
15) the o-methyl groups (and the m-hydrogen atoms) will he 

I ,  H i rNcH,l:, 
c 

1 , I  ,? < I , [ , , h l C H  
c 
,e " = CH 
I" 3 

diastereotopic and potentially anisochronous, provided that 
rotation of the ring through the coplanar conformation is slow 
on the NMR time scale. The  stereochemical situation is sim- 
ilar to  that in chiral2,6-dimethoxybenzamide investigated by 
Siddall and Garner.'O Accordingly, compound 15 was prepared 
from 1-(2,4,6-trimethyIphenyl)ethanone and (+l-phen- 
ylethylamine. The 'H NMR spectrum in CC4 solution (Figure 
1) showed one predominant isomeric form with signals a t  6 

2.11 (3 H, s, =CCH3), 2.17 and 2.24 (each 3 H, s, o-CH3'and 

metaH),6.78(1H,s,metaH),and7.11(5H,brs,C~H~).The 
=CCD3 analogue of 15 (prepared by deuterium exchange with 
CD30D) showed the same chemical shifts in CClr solution, 
except that the signal at 6 2.11 had disappeared, thus con- 
firming the assignment of this signal to  the =CCH3 group. 
The highest field singlet was assigned to  one of the o-methyl 
groups on account of the site exchange observed a t  high 
temperature in other solvents (see below). This imine will exist 
predominantly in the Z configuration (as depicted in 15) by 
analogy with compound 1 and the closely related imine 16 (R 
= CHd which has been reported to exist at equilibrium &s 95% 
Z isomer.2 Minor signals in the spectrum of 15 at 6 1.46 (d. 
3JHCCH = 6.5 Hz, CHCH3) and 4.68 (4, 3JHCCH = 6.5 Hz, 
CHCH,) are attributed to  a small proportion (ea. 6%) of the 
E isomer. 

The chemical-shift difference between the diastereotopic 
o-methyl groups in the predominant2 isomer is remarkably 
large (ea. 0.6 ppm in CCll solution). One of these signals (6 
1.59) is a t  unusually high field for an aryl methyl group which 
typically resonates near 6 2.3. This may he rationalized in 

1.29 (3 H, d, 3 J H C H  = 6.4 Hz, CHCH3). 1.59 (3 H, 8, o-CH3), 

p-CHa), 3.98 (1 H, q, 3 J ~ c c ~  6.4 Hz, NCH), 6.68 (1 H, S, 

Figure 2. Framework madel illustrating the pastdated mnfomation 
of 15. 

terms of a preferred ground-state conformation of the N-alkyl 
group which places one of the o-methyl groups in the strongly 
shielding region above the face of the phenyl ring in the 1- 
phenylethyl group as depicted in Figure 2. 

Variable-temperature NMR studies on 15 in diphenyl ether 
indicate a very high harrier to ring rotation. Thus, the two 
o-methyl signals did not coalesce up to  200 "C, the highest 
temperature attainable. Accordingly, AG* can he estimated 
to  be 327 kcal mol-I based on a maximum observed exchange 
broadening of 0.7 Hz. Similarly, in decalin solution, the meta 
protons remained nonequivalent up to the highest tempera- 
ture investigated (188 "C). However, in diphenyl ether solu- 
tion a t  200 "C the methyl and methine signals of the l-phen- 
ylethyl group in the minor (E) isomer had broadened signif- 
icantly. Clearly E-Z isomerization about the imino bond was 
occurring at an appreciable rate on the NMR time scale a t  200 
Y! (the greater exchange broadening of the E isomer is ex- 
pected as kE-2 > k2-E).  

Site-exchange phenomena were more evident in spectra 
recorded in 1,2,4-trichlorobenzene solution. The spectrum of 
15 in this solvent a t  50 OC was similar to that observed in 
carbon tetrachloride at ambient temperature, except for a 
virtual superimposition of the p-methyl, iminomethyl, and 
low-field o-methyl resonances (Figure 3a). However, a t  198 
"C the two o-methyl signals had coalesced to a broad reso- 
nance, and, furthermore, the NCH and NCCH:, signals of the 
minor ( E )  isomer (originally a t  6 4.62 and 1.36 from octa- 
methylcyclotetrasiloxane) had coalesced with the corre- 
sponding signals of the Z isomer a t  6 3.93 and 1.17 (Figure 3b). 
Therefore, mesityl ring rotation in the Z isomer and E-Z 
isomerization were both becoming fast a t  the same tempera- 
ture (ca. 198 "C). Similar effects were observed in pentach- 
loroethane solution, though a t  lower temperature (Figure 4). 
The  nonequivalent meta-proton signals in the Z isomer and 
the NCH signals of the E and Z isomers both coalesced a t  ea. 
150 "C, and, furthermore, the o-methyl signals had broadened 
and were approaching coalescence at 150 "C. Spectra recorded 
in hexachlorohutadiene solution at 150 "C showed similar 
effects. Accordingly, mesityl ring topomerization in the Z 
isomer and 2-E imine isomerization appear to he linked 
stereodynamic processes. Mesityl ring rotation is relatively 
unhindered in the minor ( E )  isomer; hence, Z-E imine 
isomerization could also bring ahout coalescence of the o- 
methyl signals in the 2 isomer. Support for this suggestion is 
derived from the observation that the addition of a trace 
amount of benzoic acid to  the decalin solution a t  188 "C also 
brought about coalescence of the two meta-proton signals in 
the Z isomer and of the ( E ) -  and (Z)-NCH signals. Previous 
work has shown that benzoic acid catalyzes E-Z isomeriza- 
tion;" hence, the observation that it also catalyzes rotation 
around the C-mesityl bond affords further evidence that this 
process is linked to  the former. 

Kessler12 has previously postulated a similar linked 
mechanism for N-aryl rotation in the E isomer of amide 17 
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Figure 3. (a) 100-MHz NMR spectrum of 15 in 1,2,4-trichlorobenzene 
at 50 "C; (b) same solution at 198 O C  (oms = octamethylcyclote- 
trasiloxane). 

involving rotation around the amide bond and fast N-aryl 
rotation in the less hindered 2 form. 

h 
'd 
/ I  

since the =CCH3 signal also collapsed to a broad resonance 
in the same temperature range where the other coalescence 
phenomena were observed (see Figures 3 and 4). Similar be- 
havior has previously been observed in the high-temperature 
NMR spectra of other imines containing a =CCH3 group and 
is due to rapid proton exchange involving transient formation 
of the enamine taut,omer.13 Therefore, fast imine-enamine 
tautomerization can bring about both E-Z isomerization and 
a net topomerization of the diastereotopic o -methyl groups 
in the 2 isomer (see Scheme I). The aryl bond-rotation step 
may take place in the E isomer or possibly in the enamine 
tautomer and is probably not rate determining. Apparently, 
the rate of imine-enamine tautomerization is greater in the 
chlorinated solvents as compared with diphenyl ether. This 
could be due to a solvent effect or to catalysis of the tautom- 
erization by trace amounts of acid material generated in the 

;k -  

I '  

T. CHCIZCCIJ 

I 1  , , I ,  , , I ,  , , , , , I I , I I , ,  , I ,  1 I I 1  / , I 1  I ,  I , 

9 0 7 6  5 4  3 2 ' I  I s o  

Figure 4. (a) 100-MHz NMR spectrum of 15 in pentachloroethane 
at 100 "C; (b) same solution at 150 " C  (oms = octamethylcyclote- 
trasiloxane; * denotes 13C satellites of the solvent signal). 

chlorinated solvents a t  high temperature. It has previously 
been noted that isomerization around the C=N bond in hy- 
drazones is accelerated in chlorinated s01vents.l~ 

In conclusion, the mechanism that brings about a net 
rotation around the aryl-imino bond in the 2 isomer of imine 
13 appears to be facilitated by high temperature, acidity, and 
imine-enamine tautomerism. 

Experimental Section 
NMR spectra were recorded at 100 MHz on a Varian XL-100 or a 

Perkin-Elmer R14 spectrometer (all variable-temperature studies 
were performed on the XL-100). Solvents for dynamic NMR studies 

Scheme I 
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were washed with sodium carbonate solution and stored over anhy- 
drous potassium carbonate. Probe temperature calibration and 
band-shape analyses were performed as described previously.ll 

2’-Phenylacetophenoae (10 g, 95%) was prepared by reaction of 
the Grignard reagent from 2-iododiphenyl(12 g) with acetic anhydride 
(30 cm3) in ether at -70 O C  under nitrogen, bp 80 OC (0.1 Torr) (lit.15, 
104-105 “C (1.0 Torr)). The other ketones were obtained commer- 
cially. 
N-[l-(2‘-Methylphenyl)ethylidene]isopropylamine (1) was 

obtained in 66% yield by refluxing 1-(2’-methylphenyl)ethanone (2.0 
g), isopropylamine (16 CIY?), and titanium(1V) chloride (1.0 cm3) in 
benzene for 3 h under nitirogen according to the procedure reported 
previously,2 bp 58-60 “C (0.05 Torr). 

Anal. Calcd for C12H17N: C, 82.2; H, 9.8; N, 8.0. Found: C, 82.2; H, 
9.7; N, 7.8. 

N-[ l-(2‘-Diphenyl)ethylidene]isopropylamine (2) was similarly 
prepared from 2-phenylacetophenone (3.0 g), isopropylamine (20 
cm3), and titanium(1V) chloride (3.0 cm3). Recrystallization from dry 
ethanol gave crystals of the 2 isomer (2.3 g, 64%), mp 121 “C. 

Anal. Calcd for C17H191\1: C, 86.0; H, 8.1; N, 5.9. Found: C, 86.3; H, 
8.4; N, 5.6. 

N - [  l-(2’-Nitrophen~l)ethylidene]isopropylamine (3) was 
similarly obtained from 1 -(2’-nitropheny1)ethanone (3.0 g), isopro- 
pylamine (16 cm3), and titanium(1V) chloride (1.5 cm3). Distillation 
under reduced pressure followed by recrystallization from light pe- 
troleum afforded crystals of the 2 isomer (2.2 g, 59%), mp 74-77 
“C. 

Anal. Calcd for CllH1&0: C, 64.0; H, 6.8; N, 13.6. Found C. 64.25; 
H, 6.9; N, 13.7. 

N-[  1-(2’-Methoxyphenyl)ethylidene]isopropylamine (4) was 
likewise obtained from 1-(2’-methoxypheny1)ethanone (3 g) in 80% 
yield, bp 65 “C (0.05 Torr). 

Anal. Calcd for C12H17NO: C, 75.35; H, 8.95; N, 7.3. Found: C, 75.6; 
H, 8.6; N, 7.2. 

N-[ 1-( l’-Naphthyl)ethylidene]-2,2-dimethylpropylamine (10) 
was similarly prepared in 45% yield from 1-(1’-naphthy1)ethanone 
(2 cm3), 2,2-dimethylprop~rlamine (10 cm3), and titanium(1V) chloride 
(1 cm3), bp 110 “C (0.1 Torr). 

Anal. Calcd for C17H211V: C, 85.35; H, 8.8; N, 5.85. Found: C, 85.6; 
H, 8.8; N, 5.6. 

N - [  l-(2’,4’,6’-Trimethylphenyl)ethylidene]-l-phenylethyl- 
amine (15) was obtained in 50% yield from 1-(2’,4’,6’-trimethyl- 
pheny1)ethanone (2.0 g), (f)-1-phenylethylamine (16 cm3), and ti- 
tanium(1V) chloride (1.0 cm3), bp 128-130 “C (0.1 Torr). 

Anal. Calcd for C19H23N: C, 86.0; H, 8.7; N, 5.3. Found: C, 85.7; H, 
9.0; N, 5.6. 

Replacement of the 4 C H 3  protons in 10 and 15 by deuterium was 
achieved by allowing a solution of the imine in deuteriomethanol 
(99.8%) to stand for a few hours. The solvent was then removed and 
the process repeated until NMR analysis showed that this methyl 
signal had essentially disappeared. Imine 5 has been reported previ- 
ously.2 
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Because of .the antitumor and antiviral properties of a crude extract, the constituents of the Colombian medicinal 
plant Baccharis tricuneata (L.f.) Pers. var. tricuneata have been investigated. The hexane extract yielded four new 
ent -clerodanes, bacchotricuneatins A-D (1, 2, 3, and 4a), whose structures were elucidated, primarily by ‘H and 
l3C NMR spectrometry. Proof for the structure and stereochemistry of A and B was obtained by X-ray analysis. 
Isolated from the ether extract were cirsimaritin, cirsiliol, and scopoletin. 

Previous  report^^-^ on the pharmacological activity of 
some South American Baccharis species and their constitu- 
ents made i t  of interest to  examine the Colombian species 
Baccharis tricuneata (L.f.) Pers. var. tricuneata,  which is 
widely used in folk medicine. Initial pharmacological screening 
revealed that a n  ethanol extract possessed significant anti- 
tumor and antiviral activity which corresponds to the me- 
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dicinal use of the plant in C ~ l o m b i a ; ~ , ~  consequently, we un- 
dertook a study of its constituents. We now wish to report the 
isolation and structure determination of four new closely re- 
lated ent -clerodane diterpenoids, bacchotricuneatin A-D (1, 
2,3 ,  and 4a). The flavonoids cirsimaritin (6a) and cirsiliol (6b) 
and the coumarin scopoletin (7) were also isolated? 

The hexane extract of the aerial parts of B .  tricuneata 
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